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A method for calculating [ree-energy differences based on a free-energy perturbation {FEP) formalism in an
alloy system described by two different Hamiltonians is reported. The intended application is the calculation of
solid-liquid phase equilibria in alloys with the accuracy of first-principles electronic density-functional theory
(DFT). For this purpose free energies are derived with a classical inferatomic potential, and FEP calculations
are used to compute corrections to these reference values. For practicat applications of this approach, due to the
relatively high computational cost of DFT calculations, it is critical that the FEP calculations converge rapidly
in terms of the number of samples used to estimate relevant ensemble averages. This issue is investigated in the
current study employing two classical interatomic-potential medels for Ni-Cu. These models yield differences
in predicted phase-boundary lemperatures of approximately 100 K, comparable to those that might be expected
between a2 DFT Hamilionian and a wel-fit classical potential. We show that for pure elements the FEP
calculations converge rapidly with the number of samples, yielding free-energy differences converged to within
a fraction of a meV/atom in a few dozen energy calculations. For a concentrated equiatomic alloy similar
precision requires roughly a hundred samples. The results suggest that the proposed methodology could
provide a computaticnally tractable framework for calculating solid-liquid phase equilibria in concentrated

alloys with DFT accuracy.

DO 10.1103/PhysRevB.78.134203

L. INTRODUCTION

Over the past two decades first-principles-based methods
have been extensively developed for the calculation of solid-
state alloy phase diagrams within the predictive framework
of electronic density-functional theory (DFT).'-7 These
methods generally rely on the use of lattice-model Hamilto-
nians, with interaction parameters derived from first-
principles calculations, to meodel the configurational energet-
ics of solid alloy phases. The resulting model for alloy
energetics is then combined with (quasi-) Harmonic theory
and Monte Carlo simulations as a framework for computing
vibrational and configurational contributions to finite-
temperature free energies, respectively. The computational
efficiency and predictive capabilities of such approaches
have led to growing applications for metallic, semiconductor,
and oxide systems. In contrast to this favorable situation for
calculations of solid-state thermodynamic properties and
phase boundaries, far less progress has been demonstrated to
date in the application of first-principles methods for com-
puting solid-liquid alloy phase equilibria.

While accurate ab initio calculations of melting lines have
been demonstrated for pure elements and stoichiometric
compounds based on quantum-molecular-dynamics (QMD)
simulations,®~'! these calculations are typically based on
thermodynamic-integration techniques,!” which are not eas-
ily generalized for applications to concentrated alloys with
compositional disorder. To date first-principles calculations
of alloy solid-liquid phase boundaries have been demon-
strated from QMD thermodynamic-integration methods only
in the limit of dilute solute compositions.'*"* For concen-
trated alloys, the challenge lies in the need to average over
the ionic configurational degrees of freedom, which for a
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solid substitutional alloy requires the use of Monte Carlo
sampling methodologies, owing to the slow diffusive time
scales over which these degrees of freedom are sampled in
molecular dynamics (MD), For liguid-phase alloys, where
diffusive time scales are much faster, sampling aver the con-
figurational degrees of freedom is possible by MD, but time
scales on the order of tens of picoseconds are required,
which are still relatively long for QMD simulations consid-
ering that several such runs at different compositions and
temperatures are generally required to construct free-energy
curves and associated phase boundaries.

In this paper we propose a framework that we expect to
be useful for first-principles phase-boundary calculations in
concentrated alloys based on the framework of thermody-
namic free-energy perturbation (FEP) theory.'>!¥ The basic
approach is illustrated in Fig. 1. It involves the sampling of
configurational and atomic displacement degrees of fresdom
employing a classical interatomic potential in Monte Carlo
simulations to generate reference free-energy curves for solid
and liguid phases, as illustrated by the dashed lines and open
symbols in Fig. 1. Such calculations are further used to gen-
erate trajectories as the basis for FEP calculations and to
compute the free-energy differences between the classical
and DFT Hamiltonians, thus “correcting” the predictions of
the classical potential, as illustrated by the solid lines and
filled symbols in Fig. 1. The result of the procedure is then
DFT-based results for solid and liquid free energies, which
can be used both to construct phase boundaries, and to pro-
vide thermodynamic driving forces for continuum models for
solidification kinetics.

The purpose of this work is to employ classical potentials
to test the computational efficiency of the approach outlined
above. The remainder of this paper is organized as follows.
In Sec. I we review (i} a methodology for deriving the ref-
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FIG. 1. (Color ontine) Schematic illustration of a two-step ap-
proach Lo calculate solid-liquid boundaries in concentrated alloys
with ab inftio accuracy. In the first step, the free energy versus
concentration {mole fraction of element 2, x,) curve is calculated
using standard thermodynamic-integration techaiques with a refer-
ence classical interatomic potential (open symbols} and fitting the
calculated excess {ree energies to a polynomial expansion (see de-
tail in the text). In the second step, a thermodynamic perturbation
scheme is applied to calculate the difference in the free energy
belween the reference potential and a fully ab initio DFT calcula-
tion at several concentrations {filled symbols). The points so cakcu-
lated can be used to refit the polynomial expansion of the excess
free energy, thus gaining an ab initio accuracy in the calculations of
concentrated-alloy free energies and associated solid and liquid
phase-boundary compositions, x; and xf,_, respectively.

erence solid and liquid free-energy curves based on classical
thermodynamic integration using semi-grand-canonical
Monte Carlo methods and (ii) a free-energy perturbation ap-
proach for computing corrections to the resulting free-energy
curves, The central issue concerning the practical implemen-
tation of this approach is the convergence of the second step
with respect to number of samples employed in the estima-
tion of relevant ensemble averages. We therefore present in
Sec. HI the results of a test based on the use of two different
classical potentials that are known to give substantially dif-
ferent solid-liquid phase diagrams for the same system. The
results of these tests suggest rapid convergence both for pure
elements and for concentrated alloys. The results are dis-
cussed in Sec. IV and the main conclusions summarized in
Sec. V.

1. METHODS

A. Thermodynamic-integration calculations of reference
free energies

As described in Sec. I, the first step in the proposed ap-
proach involves the calculation of free energies as a function
of compuosition for both solid and liquid alloy phases at fixed
temperature and pressure. We briefly review here an ap-
proach that has been described in detail in previous
publications.'®!” The approach starts from the knowledge of
the equilibrium melting temperature {Tpepne) for the pure
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solvent material (referred to here as species 1), where the
solid and liquid free energies are equal. The free-energy dif-
ference (AG emg) between solid and liquid phases at some
particular temperature (T) above or below Ty, is deter-
mined by performing thermodynamic integration based on
the Gibbs-Helmbholtz relation:

‘9(AG=nehing/T)f‘9T= - A["{meltil1«,;"“r29 (1 )

where AGmh-mfo]—-G{,, Gf denotes the Gibbs free energy
of phase « (solid or liquid) for pure species 1, and similarly
for the enthalpy of melting, AHmeh-me;')—Hg. The alloy
free energy (G®) as a function of composition is then com-
puted by integrating the following relation:

dGHdx,=Ap”, (2)

where Ap=p,—u, is the difference in chemical potential
between the solute and solvent species, and x, denotes the
mole fraction of solute. This latter integration requires
knowledge of the relationship Agu(x,) at constant tempera-
ture and pressure, which can be readily derived from Monte
Carlo simulations employing a semi-grand-canonical (SGC)
ensemble.'®

For the purpose of performing the integration of Eq. (2), it
is useful to fit an analytical form for A by decomposing this
quantity into ideal and excess contributions as follows:

X
Ap(ay) = kT In—"= 5 Al {xy), 3)

1 Xa

where the last term (Au) typicgllly can.be fit by a low-order
polynomial for the purpose of integration. The result is an
expression for the free energy of phase a that can be written
in the following form:

G, P,T) = GE(P,T) + kgT{xy In(x3) + (1 — xz)In(1 — x3)]

n

+ 2 ANP,TIX, (4)

where Gg(P,T} denotes the free energy of pure species | in
the o phase, which needs only to be defined to within an
arbitrary constant; this value can be assigned zero for one of
the phases (e.g., solid) with the value for the other phase
{e.g., liquid) being given by the free-energy difference
(AG peiiny) 3s derived from the integration of Eq. (i). The
polynomial coefficients (A7) in Bq. (4) are obtained from the
results of SGC Monte Carlo derived relationship between
Ap and x,. Examples demonstrating the use of the approach
described above are given in Refs. 16, 17, and 9.

B. Free-energy perturbation method

The procedure described in Sec. II A can be implemented
straightforwardly with a classical interatomic-potential
model to derive a reference free-energy curve. We turn next
1o the problem of correcting these reference free encrgies
employing an approach that we will refer to as free energy
peturbation (FEP) calculations. From Sec. 1T A, the free-
energy curves for solid and liquid phases can be construgted
from the knowledge of AGy=G{-G} (i.e., the difference in

134203-2




SOLID-LIQUID PHASE EQUILIBRIA FROM FREE-...

free energies between liquicd and solid phases for pure spe-
cies 1), as well as the values of the polynomial coefficients
A[ in each phase. The correction to the first term (AGp) can
be derived by computing the differences in elemental solid
and liquid free energies between the reference and final
Hamiltonians; similar calculations for alloys with a few dif-
ferent compositions can then be used to reoptimize the coef-
ficients A; in Eq. (4) to construct the final free-energy curve.
In this paper we propose Lo calculate these free-energy cor-
rections employing a FEP methodology, which dates back to
Zwanzig.'®

We concentrate here on the calculation of free-energy dif-
ferences at zero pressure, where the Gibbs (G) and Helm-
holtz (F) free energies are equal, i.e., G=F+PV=F, Exten-
sion to finite pressure is straightforward. The difference in
free energies between two systems A and B, whose thermo-
dynamic properties are governed by the Hamiltonians H,
and fp, can be written as

)BAFAHB == ln((exp - JG(UA—'B)))a (5)

where 8=1/kgT (kg being Boltzmann’s ¢onstant) and U4_g
is the potential energy difference calculated for the same
configuration using the two different Hamiltonians A, and
Hp. The brackets {- --} indicate a canonical ensemble average
over the configurations of system A only. It is interesting to
note that this FEP formula can be thought of as a particular
case of Jarzynski’s relation®” connecting nonequilibrium
work values and [ree-energy differences:

BAF,_p=—n({exp(— BW,_p)}), (6)

where W, _ 5 is now the work done along any path connect-
ing A to B. The FEP procedure can be thought of as a limit of
Eq. (6), where one takes a nonequilibrium path involving an
infinitely quick switch between the two states.

In practical applications, the ensemble average in Eq. (3)
is approximated by a finite sum over N configurations (o)
generated from an equilibrium NVT (constant number of
particles N, volume V and temperture T) molecular dynamics
or Monte Carlo simulation for system A:

N
BAF, ,p=—In iZ exp- BU,_g(a)] |. (N

a=|

Compared to commonly used equilibrium thermodynamic-
integration approaches, this FEP formulation is conceptually
simpler as no information other than the internal energy of
the system is needed and the approach avoids the necessity
of equilibrating the final state configurations, which would
otherwise give an added computational cost. However, the
use of FEP formalism for the calculations of [rec-energy dif-
ferences has been shown in many cases to suffer from con-
vergence problems and associated overbias of free-energy
differences. Several studies have been undertaken to under-
stand the origins of these problems (see Refs. 21-23), and it
has been shown that they arise from the entropy difference
between the target and reference system. As will be dis-
cussed below, rapid convergence of Eq. (7) requires that sys-
tems A and B are sufficiently “close” in the sense that will be
described in Sec. I'V. Hence, the purpose of the calculations

PHYSICAL REVIEW B 78, 134203 (2008}

described in Secs. TH and IV is to assess the convergence
properties of Eq. (7) for two classical interatomic-potential
systems giving differences in energy and phase diagrams
comparable to those expected between a good classical inter-
atomic potential and a DFT Hamiltonian.

C. Implementation

As described in Sec. II B, rapid convergence of Eq. (7)
can be expected if the configurational energetics of the ref-
erence Hamiltonian are sufficiently close to those of the final
state. Efficient applications of the FEP formalism involving
the use of DFT Hamiltonians as the target result thus require
high-quality classical potentials, which in practice may be
obtained by fitting to an extensive enough set of data gener-
ated from the DFT Hamiltonian.

To better quantify the statistical convergence properties of
Eg. {7) we consider bere a lest system, namely, Ni-Cu, We do
not undertake DFT calculations in this analysis but rather
choose as the reference and target systems (i.e., systems A
and B in the notation of the previous section) two classical
Hamiltonians that are known to give rise to significantly dif-
ferent phase boundaries (e.g., solidus and liquidus bound-
avies differing by roughly 100 K} for this system.

We choose as our reference and largel systems the
embedded-atom-method (EAM) Cu-Ni potentials due to
Foiles®® (referred to hereafter as the “smf7” potential}) and
Foiles, Baskes, and Daw?’ (referred to hereafter as the “u3”
potential), respectively. From coexistence simulations the
melting temperatures of the smf7 and 3 potentials for el-
emental Ni have previously been calculated to be approxi-
mately 1820 and 1710 K, respectively.”®** For use in Sec,
IIY, we will take the difference in melting temperature be-
tween the target {3} and reference (smf7) systems as
AT mening=—110 K with an estimated standard statistical un-
certainty of 3 K.

To apply the FEP method to compute the [ree-energy dif-
ferences between reference and target potentials for pure el-
ements, the configurations ¢ in Eq. (7) were generated em-
ploying standard NVT molecular-dynamics simulations with
a system size of 500 atoms {corresponding to 3 X35 X3 fcc
unit cells for the solid phase) and periodic boundary condi-
tions (subsequent NPT (constant number of particles N, pres-
sure P and temperature T) dynamics simulations were also
performed to compute pressure corrections to melting tem-
peratures as described in Appendix). Temperature was main-
tained constant using a Nose-Hoover thermostat (similarfy,
pressure in the NPT simulations was maintained with a
Nose-Hoover baroslat)* and the integration of the equations
of motion was performed using a velocity-Verlet algorithm'?
with a time step of 2 ps. All simulations were based on the
use of the LAMMPS code.?' Simulations were performed at a
temperature of 1820 K for pure Ni. The MD trajectories were
used to generate statistically independent states collecting
one configuration every 0.1 ps. Through these configurations
the free-energy difference is calculated through Eq. (7) by
computing I/, . as the difference in potential energies be-
tween the reference and target potential for each sampled
configuration.
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FIG. 2. (Color onling} Free-energy difference as given in Eq.
(17) as a [unction of the number of steps (N} taken into consider-
ation in the averaging. The bottom panel presents free-energy dif-
ferences between the #3 and smf7 potentials for solid and liquid
phases of elementat Ni. The top panel represents free-energy differ-
ences between solid-solution and lquid phases of a concentrated
NisoCUsu alloy.

In addition to considering pure elements, we applied the
FEP method to compute free-cnergy differences between ref-
erence and target potentials for a concentrated equiatomic
(xni=0.5) atloy using Monte Carlo simulations in a canonical
(NVT) ensemble with the volume V chosen to give zero
pressure for the reference system. As in the MD simulations,
we employed 500-atom supercells with periodic boundary
conditions. The displacement and configurational degrees of
freedom of the alloy were sampled through Monte Carlo
steps that involved selecting two atoms at random and at-
tempting displacements of each with a maximum value of
0.2 A along each Cartesian direction, coupled with an at-
tempted exchange of species if the two atoms selected were
of opposite type. These attempted moves were accepied or
rejected based on the Metropolis algorithm appropriate for a
canonical ensemble at a temperature of 1500 K. A total of
500 independent configurations were generated from these
simulations for use in Eq. (7).

HIL RESULTS

Figure 2 plots the value of the calculated frec-energy dif-
ferences between target and reference systems as a function
of the number of steps (N) taken into consideration in Eq. (7)
for both the solid and liguid phases in the pure system (bot-
tom panel) and in the concentrated NisCugy alloy (top
panel). We report the results in the form of block averages as
defined in Ref. 32.

The results in Fig. 2 show that the calculated free-energy
values converge very rapidly for the pure element, for both
the liquid and solid phases, with only a [ew times ten steps
required to obtain results converged to within a fraction of a
meV per atom. For the alloy the convergence is clearly seen
to be slower {especially in the solid phase); however, con-
vergence to a fraction of a meV/atom is still achievable in
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approximately 100 steps, a value of N which is definitely
achievable in an ab initic DFT framework. Moreover, a cor-
rection {o the results to estimate the N— o limit could be
applied if needed, further improving the accuracy of the re-
sult. As shown in Refs, 21, 22, and 32, this correction gen-
erally implies writing the free-energy variation as block av-
erages (defined in the references above) and fitting it to a
polynomial of the form

AfTNm AFm+ qsl(llfN)}-, (8)

where 7, and ¢, are filing parameters and N is the number
of work values included in the definition of the block aver-
age. A theoretical justification for this form of the fitting
function is given in Ref. 21, while for practical applications
the reader is referred to Refs, 22 and 32,

To check that the results in Fig. 2 are converging to the
correct values, we use these numbers to perform a calcula-
tion of the difference in melting points predicted by the two
Ni potentials for comparison with the value of AT 0=
—110%23 K derived from coexistence simulations. For this
purpose we make use of the lollowing relationship between
AGmch-mg=G" —G* and temperature:

AGmelu’ng =] — T , (9)
Lmelling Tmeiﬁng

where Lpegn, is the enthalpy of melting (i.e., the latent heat
of fusion at constant pressure). Equation (9) can be derived
from the classical Vant’Hoff equation™ under the assumption
that L does not vary in the interval [T-T,,,], which is a valid
assumption in this case. For the reference smf7 potential we
have performed simulations at the equilibrium melting tem-
perature, TP =1820 K, where AGS™ =0, The melting

melting X mcltin%
temperature for the target 43 potential (7" ;) can then be

meltin

derived with the aid of Eq. (9) using the calculated value of
AGﬁfﬂ“ng obtained from the solid and liquid free energies in
Fig. 2 as follows:

smf7 AG"3
melting _ 1- melting (]0)
3 - 13

T melting Lmelling

As we are interested in the zero-pressure melting point, we
have G=F. Calculation of AF, ;.. is performed by applica-
tion of Eq. (7). We refer to the Appendix for further details of
this calculation.

In Fig. 3 we present the calculated difference in melling
temperatures as a function of the number of samples (N)
used in the FEP formula Eq. (7). The present resuits lead to
a predicted melting temperature of approximately 1711.5 K,
which agrees with the value of 1710 K derived from previ-
ous coexistence simulations, within the statistical uncertainty
of 5 K quoted above. We also note that the present results for
AT meiing 8r€ s€ET to cOnverge to within a fraction of a Kelvin
within a few dozen samples. The results thus suggest that the
formalism outlined in this paper may provide an extremely
efficient method for obtaining melting points of metals from
DFT calculations, employing FEP calculations based on ref-
erence classical EAM potentials.
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FIG. 3. (Color online} Calculated difference in melting tempera-
tures for Ni from smf7 and #3 potentials, as a function of the num-
ber of steps taken in consideration in the FEP average (red curve).

V. DISCUSSION

We turn now to a discussion of the factors underlying the
relatively fast convergence of Eq. (7) in our calculations, and
the implications of our results for free-energy calculations in
alloys. The formal mathematical model on which our argu-
ment is based was first developed by Lu and Kofke in Ref.
23, where they have shown that, under some basic assump-
tions, the exponential fractional inaccuracy of the calculated
free-energy difference (i.e., the difference between the expo-
nential of the true and calculated free-energy difference with
respect to the former) can be written as

exp(~ BAF ne) — expl(= BAF e ) - jwﬂ Py (W)W,
CX{)(‘-‘ BAFlrue) =

(1)

where the subscripts A and B refer to the choice of the par-
ticular reference system, P,{W) is the distribution of the
work values (i.e., the difference in energy in our case) ob-
tained in going from the reference (X) to the target system,
and W, is the work value above which complete sampling is
assumed. A graphical interpretation of Eq. (I1) shows that
the inaccuracy in the estimate (AF,. ) of the free energy
caleulated going from A to B is given by the area under the
probability distribution Pz(W) of work values one would ob-
tain going from B to A {i.e., taking B as the reference sys-
tem), see for reference Fig. 4.

The most important message that one can obtain from Eq.
{11) is that the FEP formula can be successfully used only in
those cases where the two systems under consideration gen-
erate highly overlapping work distributions. This condition is
obtained if, as in our case, the Hamiltonians describing the
two systems A and B mainly sample the same part of the
phase space. To clarify this point consider the following
qualitative model (see Fig. 5 for reference}, which we hope
can give some more insights on the physics underlying the
problem.

Suppose that a particular configuration I" has a high prob-
ability of appearing in system A because it is a low-energy

PHYSICAL REVIEW B 78, 134203 (2008)

PO
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FIG. 4. (Color online) Graphical representation of Eq. {11). The
fractional inaccuracy for a given simulation attempting to cafculate
a free-cnergy difference between system A and B is given by the
area under Pp below a certain value Wy, Above Wy complete sam-
pling of P, is assumed (Ref. 23). Gaussian distributions are shown
for illustrative purposes, although the real distributions need not be
Gaussian in an actual simulation.

configuration but has a low probability of being observed in
system B, where it has a high energy (left image in Fig. 3).
For this configuration swapping between the two different

potentials gives rise to a work value of W=U,z—-U,. Finding
a value W starting from system A has a high probability, i.c.,

PA(W) is high. However, as I is a high-energy configuration
in the B system this will rarely be sampled starting from
system 8 so PB(‘W) is low, and thus the overlap between the
two work distribution curves and hence the accuracy of the
calculations will be low. The same explanation can be used
where the configuration I' is now a low-energy configuration
for both potentials; in this case though one will have a very

good overlap between P{W) and Pp(W) and a high accuracy
will be obtained (right image in Fig. 5). In the present work
the rapid convergence to the correct value of the free-energy
difference calculations implies that the two different EAM
potentials for Ni-Cu are apparently close enough to sample
similar regions of phase space.

We believe our result to be quite general and that a simi-
larly rapid convergence can be obtained for other systems as
well. Since the pioneering work of Ercolessi and Adams™* in
the early 90’s, the development of interatomic potentials
based on fitting to ab initic results has become relatively
standard practice. This approach has been used for a variety
of systems inchuding pure metals,”** alloys,~* and other
inorganic compounds.***! As these potentials are constructed
to accurately reproduce ab initio energies for many different
configurations, they are natural candidates for applications of
the method we have described. Moreover, if the spread in the
energies is still too high to achieve rapid convergence, the
newly calculated @b initio energics can be included in the
database to refil the potential, improving its accuracy and
thus enhancing convergence with little additional computa-
tional cosL.

The results of this work suggest that it should be feasible
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FIG. 5. (Color online} Comparison of work values W given by direct (A — B} and inverse (B~ A) processes and their relationship to the
energy fandscape (here exemplified as a single coordinate system). The arrows indicate the most probable work value sampled Wy starting
from system x. (a) The probability of direct and reverse observation of a work value W is high in both systems; hence, convergence is fast.
(b) Configurations sampled by system A and system B are rarely the same, the generated work distribution will poorly overlap leading to

slow convergence.

to use the FEP approach for a larget system involving an ab
initio potential, as a framework for calculating accurate ab
initio free-energy differences in a straightforward and com-
putationally tractable manner, even for concentrated alloys
where alternative  approaches involving  equilibrium
thermodynamic-integration methods are expected to be much
more computationally expensive, We want 10 stress here that
the availability of & good, starting potential {i.e., one close to
the target Hamiltonian) is an absolutely necessary prerequi-
site for such applications involving DFT target Hamiltonians.
A potential which leads to energy difference significantly
different from DFT would give rise to a slower convergence
rate of Eq. (7).

Our approach is related to that recently proposed by Gre-
eff in Ref. 42. In that paper only the case of a pure liquid is
considered and the free-energy difference is calculated by a
truncated cumulant expansion of Eq. (5). We have shown
here our nonperturbative method is viable for a concentrated
alloy in both solid and liquid phases. The perturbative ap-
proach of Greeff should also be applicable to alloys, but the
trade off between computational time and accuracy has not
yet been studied.

V. CONCLUSIONS

In this paper, we have demonstrated that it is possible to
calculate free-energy differences in both elemental metals
and concentrated alloys in an accurate and computationally
efficient manner within a simple FEP formalism. We demon-
strate that for typical differences one would expect between
two reasonably accurate potential energy descriptions in a
metal, free-energy values can be calculated to a precision
better than | meV/atom within approximately a hundred
sampling steps. We further establish that the values obtained
from the FEP lormalism converge to the correctl limits by

using the calculated free energies to compute the melting
temperatare of Ni using a EAM potential for which the pre-
sents results are within the statistical error bars of the values
derived independently from coexistence simulations.**

The present calculations are found to suffer only weakly
from the convergence problems that can be present in using a
FEP formalism. We discuss how this finding can be associ-
ated with the relatively small differences in entropy between
the reference and target systems, meaning that the systems
can be considered to be small perturbations from one an-
other. We expect that the approach outlined in this paper
offers a reasonably efficient way to tackle the problem of
calculating solid-liquid phase boundaries in alloys with DFT
accuracy over the entire composition range.
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APPENDIX

Calculation of AF g, in our framework needs in prin-
ciple the calculation of two different terms for both the solid
and liquid phase, provided the simulation temperature is the
same:
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4 ‘B
FAVATY = FRVET) + f:" VD) dV — AF—E,
Ve T
(12)
AFAE = PRV T) - FAVALT). (13)

Here the superscript refers to the two different potentials
between which the free-energy difference has to be calcu-
lated and the Greek subscript to the phase (here solid or
liquid). Further, V¥ is the equilibrium volume of phase & at
the temperature for which sampling has been made for po-
tential A {the smf7 potential in our case), i.e., what is referred
to here as T*. By contrast, Vg is the equilibrium volume of
phase « at the melting temperature 7% calculated in some
other simulation using potential B {the »3 potential in our
case).
Using the thermodynamic identities

FF LV, T}
v

=—Pa (14)
T

combined with Eq. (12) yield

v v

B a ;
A‘F“(‘mel{ing( Vﬁ!ﬁ’ T) = Fg'lelliﬂg( Vﬁ!ﬁ! T) - fvﬂ pgﬂ'v+ fvﬂ [’;dv

A @

—AFABVA T, (15)

The first term on the right-hand side is zero since we start
our simulation at the melting temperature of the reference
potential (smf7) and is thus the free energy of melting is by
definition zero. The second and third terms are pressure
terms, which depend on the fact that the equilibrium volumes
are not necessarily the same for the two different potentials.

For what concerns the pressure term in Eg. (13),
pE (V2 2,T)=0, and we take in the integration p% 5= const
=p (Vaﬁ,T)/Z i.e., we considered p linearly increasing in
the interval [VZ- VA] This assumption is found o be well
justified from the behavior of the computed pressure during
the simulation.

Under the above assumptions, Eq. (13) can be rewritten as
follows:

1
AF‘l‘;l'lelting( Vg.’ﬁs T)=~— Eﬂg( Vg, T)[Vg(’r) - VE(T)]

+ 2PV - VD)

F{T}lcllmn(v’le)- (16)

Considering the last term in Eq. (16} by applying the FEP
equation, we have for both solid and liquid

I
AFA-m:—E(cxP“ﬁ(UB“ Uaa- (17)
This average is calculated by taking snapshots of the con-
figurations generated through MD with the smf7 potential
every 100 fs in order to avoid statistical correlations between

them, switching to the u3 potential and calculating Uy-Up.
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FIG. 6. (Color online) (a) Fluctuation of volume during NPT
simulations at O pressure for #3 and smf7 potentials. Notice that the
difference in the equilibrium volume given by the two potentials is
close to zero. (b) NVT simulation using the smf7 potential at V
=3 (o caleulate the average pressure during the run. As there is
little difference in the calculated equilibriurn volumes, the average
pressure is almost zero, hence, the ifile correction in Eq. (15) due
to the pressure term.

Figure 6 shows the resuvits of NPT MD simulations to
determine the equilibrium volumes of both the 43 and smf7
potentials.

From these simulations we calculated the pressure term,
which is here equal to

smt"i( vn3

A oressure — [V{;(T) - V%mn(T)]

. ;p:"” Ve DY) - viI(r))

1
=~ {~8.519 Kbar)(6455 Ai-6381 AN

1
+5(- 3.947 Kbar}(6001 A®-5978 A%

= 169 meV =034 meV/atom.

This value is definitely negligible.
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